Proton transfer in liquid water confined inside graphene slabs.

نویسندگان

  • Amani Tahat
  • Jordi Martí
چکیده

The microscopic structure and dynamics of an excess proton in water constrained in narrow graphene slabs between 0.7 and 3.1 nm wide has been studied by means of a series of molecular dynamics simulations. Interaction of water and carbon with the proton species was modeled using a multistate empirical valence bond Hamiltonian model. The analysis of the effects of confinement on proton solvation structure and on its dynamical properties has been considered for varying densities. The system is organized in one interfacial and a bulk-like region, both of variable size. In the widest interplate separations, the lone proton shows a marked tendency to place itself in the bulk phase of the system, due to the repulsive interaction with the carbon atoms. However, as the system is compressed and the proton is forced to move to the vicinity of graphene walls it moves closer to the interface, producing a neat enhancement of the local structure. We found a marked slowdown of proton transfer when the separation of the two graphene plates is reduced. In the case of lowest distances between graphene plates (0.7 and 0.9 nm), only one or two water layers persist and the two-dimensional character of water structure becomes evident. By means of spectroscopical analysis, we observed the persistence of Zundel and Eigen structures in all cases, although at low interplate separations a signature frequency band around 2500 cm^{-1} suffers a blue shift and moves to characteristic values of asymmetric hydronium ion vibrations, indicating some unstability of the typical Zundel-Eigen moieties and their eventual conversion to a single hydronium species solvated by water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multistate empirical valence bond study of temperature and confinement effects on proton transfer in water inside hydrophobic nanochannels

Microscopic characteristics of an aqueous excess proton in a wide range of thermodynamic states, from low density amorphous ices (down to 100 K) to high temperature liquids under the critical point (up to 600 K), placed inside hydrophobic graphene slabs at the nanometric scale (with interplate distances between 3.1 and 0.7 nm wide) have been analyzed by means of molecular dynamics simulations. ...

متن کامل

Molecular dynamics simulations of supercritical water confined within a carbon-slit pore.

We report the results of a series of molecular dynamics simulations of water inside a carbon-slit pore at supercritical conditions. A range of densities corresponding from liquid (0.66gcm;{-3}) to gas environments (0.08gcm;{-3}) at the supercritical temperature of 673K were considered. Our findings are compared with previous studies of liquid water confined in graphene nanochannels at ambient a...

متن کامل

Dynamics of different steps of the photopyrolytic cycle of an eminent anticancer drug topotecan inside biocompatible lyotropic liquid crystalline systems

In the present work, we have explored the dynamics of different steps of photopyrolytic processes of an eminent anticancer drug topotecan (TPT) inside the biocompatible reverse hexagonal (HII), gyroid (Ia3d) cubic and diamond (Pn3m) cubic lyotropic liquid crystalline (LLC) phases. Both steady state and timeresolved area normalized emission spectrum (TRANES) demonstrate the generation of an exci...

متن کامل

Heat transfer enhancement due to air bubble injection into a horizontal double pipe heat exchanger

If an air flow is injected into a liquid fluid, many ambulant air bubbles are formed inside the fluid. Air bubbles move inside the liquid fluid because of the buoyancy force, and the mobility of these air bubbles makes sizable commixture and turbulence inside the fluid. This mechanism was employed to enhance the heat transfer rate of a horizontal double pipe heat exchanger in this paper. Howeve...

متن کامل

Water on graphene surfaces.

In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 2015